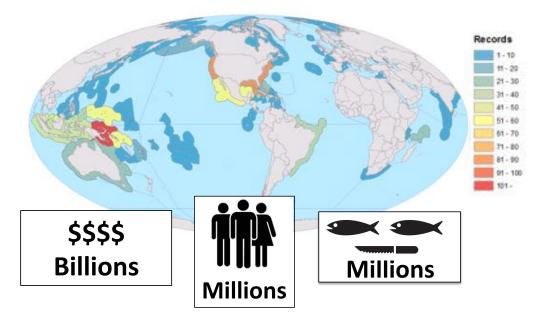
Cooperative Monitoring Program for Spawning Aggregations in the Gulf of Mexico:

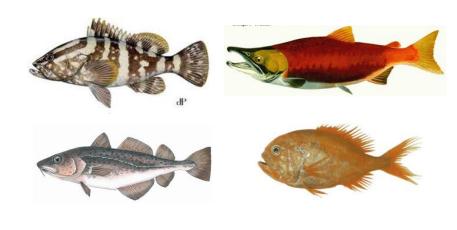
An assessment of existing information, data gaps, and research priorities



NOAA RESTORE Act Science Program

Brad Erisman, Will Heyman, Shinichi Kobara, Christopher Biggs, Nick Farmer, Susan Lowerre-Barbieri, Mandy Karnauskas, Jorge Brenner

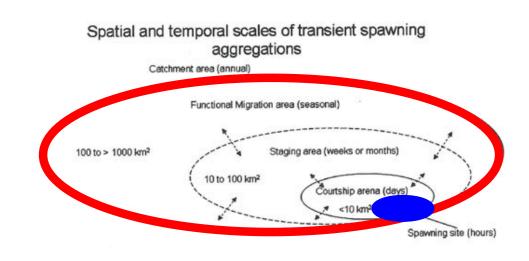

Fish Spawning Aggregations (FSAs)

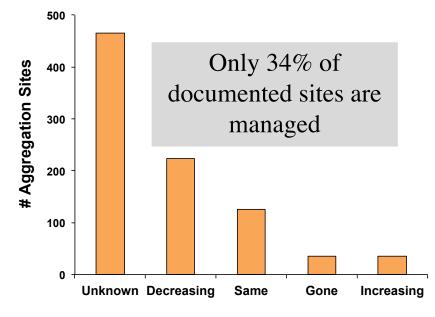


Temporary, large gatherings of fish that form for the purpose of reproduction, are predictable in time and space, and involve densities higher than non-reproductive periods

- Critical events for reproductive success
- Represent Essential Fish Habitat (EFH)
- Important for Ecosystem structure/function

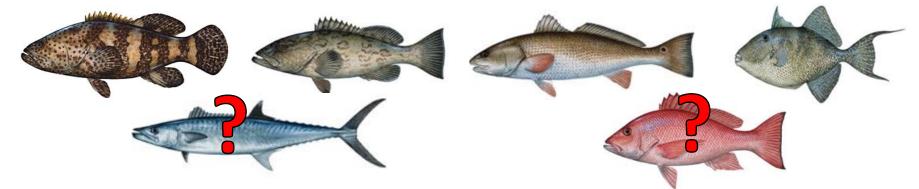
Fish Spawning Aggregations (FSAs) are important to global fisheries...




Global Challenge

FSAs can be vulnerable to overfishing...fishing effects "scale up"

FSAs are declining globally...few are monitored, assessed or managed


Inclusion within management works

- Increased reproductive output
- Stabilized population structure
- Practical for monitoring
- Improved stock assessments
- Increased catches and CPUE
- Supports ecosystem-based management

(Erisman et al. 2015, Fish & Fisheries)

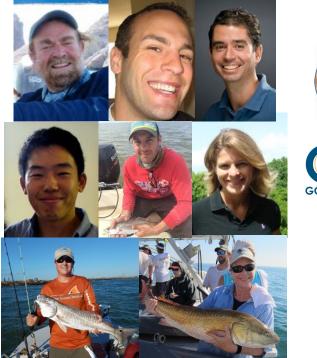
Regional Challenge

Many species of exploited and protected fishes are known to or likely form FSAs In the Gulf of Mexico

...BUT it is one of the world's least studied areas for the biology and fisheries of FSAs

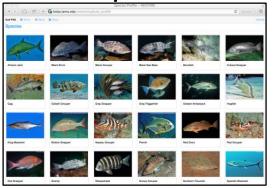
Despite a wealth of scientific information and regional knowledge on the biology and fisheries on aggregating species

Reproductive styles of shallow-water groupers (Pisces: Serranidae) in the eastern Gulf of Mexico and the consequences of fishing spawning aggregations


Felicia C, Coleman¹, Christopher C, Koenig¹² & L, Alan Collins²
¹ FSU/MFS Institute for Fishery Resource Ecology, Department of Biological Science, Florida State University, Tallahassee, FL 32306-2043, U.S.A.
² National Marine Fisheries Service, 3500 Delwood Beach Road, Panama City, FL 32408-7499, U.S.A.

Our Team

Support provided by:

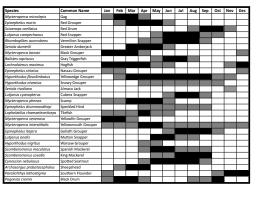

Scott Hickman (CFA) & Roy Williams Chris Taylor (NOS/NCCOS/CCFHR) Todd Kellison (NOAA SEFSC – Beaufort) John Froeschke (GMFMC) Martin Russell (SCRFA) NOAA Southeast Regional Office Chris Koenig (FSU) Many, many fishermen

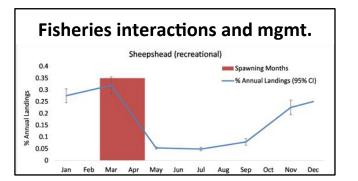
Objectives

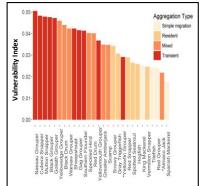

- 1. Compile and evaluate existing information on fish spawning aggregations in the GOM as the basis to design a cooperative monitoring program for FSAs.
- 2. Engage in a comprehensive outreach and data-sharing program to ensure all data and project outputs are available to inform management.

Objective #1: Outputs

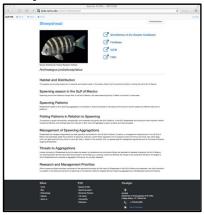
30 species


Database of 800 refs.


Spawning Seasons


Life history and spawning behavior

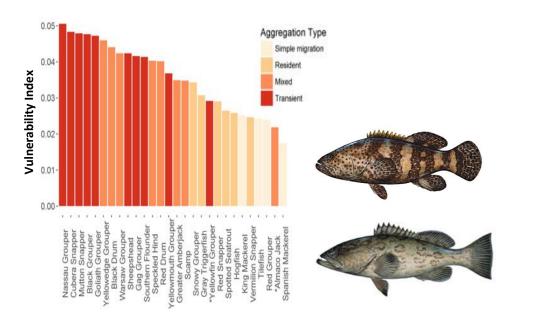
General Information			Intrinsk Indicators										
Common Name	Genus	Species	Aggregation Type (1-4)	Spawning Season Months	Spawning Season Duration (1-4)	Max Age (years)	K v8 Growth Coeff.	L _{er} Asympt. Length (cm)	Age at Maturity (mo)	M Nat. mort.	Density Change (1-6)		
Gag Grouper	Mucheroperca	Mycteroperca microlepis	4	FMA	3	31	0.1342	127,795	42	0.1342			
Red Grouper	Epinephelus	Epinephelus morio		FMAMalu	3	25	0.1251	82.5	33.6	0.14	_		
Red Drum	Scieences	Scieenops ocefletus	3	AuSON	3	42	0.37	88.1	48	0.16			
Red Snapper	Lationus	Lutionus compechanus		MadaliAuS	3	48			24		3		
Vermillon Snapper	Ahombooites	Abombopites purorubens	3	AMaluRAuS	3	26	0.3254	34.4	24	0.25			
Gneater Amberjack	Seriola	Seriolo dumenili		MAMAJu	3	15	0.144798	343.6	37	0.25			
Black Grouper	Adveteroperco	Mycteroperox bonoc/	4	OWMA	3	33	0.1437	133.4	78	0.136			
Gray Triggerfish	Aplates	Balates capriscus	2	MadaBAs	3	15	0.14	58.97	18	0.27	4		
Horfish	Lachnolaimus	Lochnoloimus mosimus		NDIFMAMalu	2	23	0.1057	MA	30.8	0.172	- 1		
Nassau Grouper	(pinephelus	Epinephelus striptus	4	CIF	4	×	0.13	76	16	0.16			
Yellowedge Grouper	Algorithadus	Hyporthodus /lovolinsbatus		FMAMaJullAuSON	1	85	0.054	300.45	Chris	0.1057			
Snowy Grouper	Apporthodus	Abporthodus reventus		AMahulAu50	2	35	0.094	106.462		0.1057			
Almaco Jack	Seriola	Seriola rivoliana		JuliAuS N	3				340-				
Cubera Shapper	Lationus	Lutjonus cyonopterus		JuliAus	1	30	0.16		341-	0.098 (cube)			
Scamp	Advoteroperca	Mycteroperce phenax		S-MAMaiu	3	81	0.05		342-	0.1896 (1 keys)	100		
Speckled Hind	Epinepheius	Episephelus drummonshayi		AMAJUSAUS	3	45	0.12		343-0.079, (s. ft=0.259, key lat				
Tilefish	Lopholetilus	Lopholotilus chemaeleonticeps		FMAMaly	3	40	0.15	83	Marq	senas key+0.15	6, dry tortug		
Yellowfin Grouper	Mycteroperca	Mycteroperca venenosa	4	JFM	4				113-	0.094 (offshore	0.5604 mea		
Yellowmouth Grouper	Advicteroperca	Mycteroperce interstitiells	4	FMAMaJulAuSONE	1	28	0.08	82.8		0.0798			
Goliath Grouper	Epinephelus	Epinephelus itajore		JuliAu50	3	37	0.0937	222.1	395-	345-0.19 (ana)			
Mutton Snapper	Lutionus	Lutionus prolis	4	MaluliAu	- 3	40		85.1	289-	0.98			
Warsaw Grouper	Myporthodus	Apporthodus nigritus		AMa	- 4	63	0.05	239.4			_		
Spanish Mackerel	Scomberomorus	Scomberomorus meculatus	1	AMADULAUS	3	11	0.61	56	8.6	0.8			
King Mackerel	Scomberomorus	Scomberomorus cavalle	1	Malustais	3			115.41	48	0.174			
Spotted Seatrout	Cynaicion	Cynoscion nebulosus		AMalulAuS		12	0.32	68.7	12				
Sheepshead	Archosorgus	Archosargus probatocriphalus		FMA	- 4	20	0.36		26		-		
Southern Flounder	Aarolichthys	Paralchekys lethostigma		CNDI	3	6		65.2	26	0.362			
Black Drum	Angonias	Pogonies cromis	3	FMA 460	3	58	0.167	113.6	60	0.065	-		



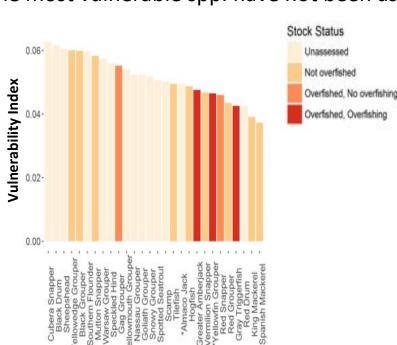
Vulnerability Assessments

Species Profiles

Bathymetric and FSA maps

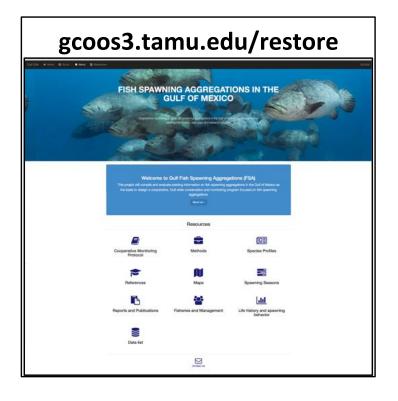


Monitoring Protocol



Take-Home Messages

- 1. Lack of information on locations of spawning aggregations in the Gulf of Mexico.
- 2. Lack of information on behavioral dynamics of FSAs in space and time (e.g. density change, periodicity, etc.).
- 3. Commercial fisheries target the spawning season and FSA sites (inferred) of most species.
- 4. Lack of information on interactions between and impacts of fishing on FSAs.



5. Transient FSAs are most vulnerable

6. The most vulnerable spp. have not been assessed

Objective #2: Outputs

Research and Management Priorities

- 1) Mine existing data to assess interaction strengths between fishing and spawning to **identify and prioritize areas and species of highest vulnerability**
- 2) Work collaboratively with commercial and recreational fishers to identify, characterize, assess, and monitor key spawning areas
- 3) Inform and **improve stock assessments** by incorporating spawning dynamics into existing assessment models
- 4) Develop management frameworks for FSAs and aggregating species through the Fisheries Management Council process

Next Steps

Short-term (1-2 yrs @ \$250k/yr) = continue within scope of current project

- Enhance visibility, access, and capability of website, profiles, databases
- Update GOM bathymetric map (< 200m) and make available on GCOOS/NOAA
- Continue vulnerability assessment and fishing interaction/impact analyses
- Workshops: (1) FSA stock assessments; (2) regional FSA monitoring protocol
- Engage recreational fishing sector
- Increase existing collaborations with commercial sector
- Add more species (bonefish, tarpon, gray snapper, etc.)

Long-term (5-10 yrs @ \$1m/yr)

- Develop a network of fishermen, scientists and managers who cooperatively predict, characterize, and monitor multi-species FSAs throughout the GOM
- Develop methods to integrate FSAs into regional stock assessments
- Establish long-term monitoring sites for FSAs in the wider GOM
- Utilize advanced technologies to improve efficiency & quality of FSA monitoring
- Assess the importance of petroleum platforms as suitable FSA sites
- Model the potential effects of climate change and fishing pressure on the phenology, distribution, and productivity of FSAs